The hypersecant Jacobian approximation for quasi-Newton solves of sparse nonlinear systems
نویسندگان
چکیده
A new Jacobian approximation is developed for use in quasi-Newton methods for solving systems of nonlinear equations. The new hypersecant Jacobian approximation is intended for the special case where the evaluation of the functions whose roots are sought dominates the computation time, and additionally the Jacobian is sparse. One example of such a case is the solution of the discretized transport equation to calculate particle and energy fluxes in a fusion plasma. The hypersecant approximation of the Jacobian is calculated using function values from previous Newton iterations, similarly to the Broyden approximation. Unlike Broyden, the hypersecant Jacobian converges to the finite-difference approximation of the Jacobian. The calculation of the hypersecant Jacobian elements requires solving small, dense linear systems, where the coefficient matrices can be ill-conditioned or even exactly singular. Singular-value decomposition (SVD) is therefore used. Convergence comparisons of the hypersecant method, the standard Broyden method, and the colored finite differencing of the PETSc SNES solver are presented.
منابع مشابه
Inexact Block Quasi - Newton Methods for Sparsesystems of Nonlinear Equations
In this paper we present the results obtained in solving consistent sparse systems of n nonlinear equations F(x) = 0; by a Quasi-Newton method combined with a p block iterative row-projection linear solver of Cimmino-type, 1 p n: Under weak regularity conditions for F; it is proved that this Inexact Quasi-Newton method has a local, linear convergence in the energy norm induced by the preconditi...
متن کاملParallel Newton Methods for Sparse Systems of Nonlinear Equations
In this paper we give the results found in solving consistent sparse systems of nonlinear equations by an inexact Newton and Quasi-Newton method both combined with a block iterative row-projection linear solver of Cimmino-type. A simple partitioning of the Jacobian matrix was used for solving two nonlinear test problems, that is a tridiagonal problem of size n = 131072 and a nonlinear Poisson p...
متن کاملAn Improved Diagonal Jacobian Approximation via a New Quasi-Cauchy Condition for Solving Large-Scale Systems of Nonlinear Equations
We present a new diagonal quasi-Newton update with an improved diagonal Jacobian approximation for solving large-scale systems of nonlinear equations. In this approach, the Jacobian approximation is derived based on the quasi-Cauchy condition. The anticipation has been to further improve the performance of diagonal updating, by modifying the quasi-Cauchy relation so as to carry some additional ...
متن کاملA matrix-free quasi-Newton method for solving large-scale nonlinear systems
One of the widely used methods for solving a nonlinear system of equations is the quasi-Newton method. The basic idea underlining this type of method is to approximate the solution of Newton's equation by means of approximating the Jacobian matrix via quasi-Newton update. Application of quasi-Newton methods for large scale problems requires, in principle, vast computational resource to form and...
متن کاملInexact Quasi-Newton methods for sparse systems of nonlinear equations
In this paper we present the results obtained in solving consistent sparse systems of n nonlinear equations F (x) = 0; by a Quasi-Newton method combined with a p block iterative row-projection linear solver of Cimmino-type, 1 p n: Under weak regularity conditions for F; it is proved that this Inexact Quasi-Newton method has a local, linear convergence in the energy norm induced by the precondit...
متن کامل